Служба защиты прав потребителей

Автоматизация и механизация машиностроения. З.5. Механизация и автоматизация производственных процессов Автоматизация технологических процессов машиностроение пример

Качество микросхем

(входной контроль 10–12 % микросхем – 1990 год, Томское объединение «Контур»)

Контрольные вопросы

1. В каких случаях автоматизация неэффективна в социально-экономическом плане?

3. Предложите основные разделы бизнес-плана для планируемой покупки и использования в цехе металлообработки токарного станка с системой ЧПУ.

4. Какие факторы являются определяющими для повышения качества и надежности выпускаемой продукции?

2. Автоматизация в машиностроении,
системы ЧПУ

Краткая классификация производственных систем следующая:

¨ производственная система – это сложная многоуровневая (иерархическая) система, которая преобразует исходные полуфабрикаты, сырье, материалы в конечный продукт, соответствующий общественному заказу;

¨ в более широком смысле: производство – это соединение ресурсов (сырья, капитала, труда и предпринимательской способности) для производства товаров и услуг;

¨ основа любого производства – технологический процесс (ТП) – определенное взаимодействие орудий труда, обслуживающей и транспортной систем;

¨ непрерывные ТП: химическая, нефтегазодобывающая и перерабатывающая, энергетика;

¨ дискретные ТП: машиностроение, раскрой материалов;

¨ непрерывно-дискретные ТП: металлургия, цементная, машиностроение и др.

За базу ТП и соответствующих систем автоматизации примем машиностроение. Именно машиностроение (процессы обработки металлов) наряду с ткацкой промышленностью первыми потребовали автоматизации. Машиностроение широко развито в Прикамье. Учтем, что системы автоматизации в различных отраслях
выполняются на единой технологической базе, по одинаковым
принципам.

Анализ технологических процессов в машиностроении показывает, что в общем цикле организации производства детали станочное время занимает в среднем не более 5 % (остальное – подготовка производства, транспортирование, пролеживание и т.д.). В ста-
ночном времени время обработки составляет только около 30 %
(остальное время позиционирование, загрузка, измерение, холостое время и др.).

Усилия, направленные на интенсификацию механической обработки, оказывают влияние лишь на небольшую часть в общем балансе цикла получения готового изделия. Тот же анализ показывает, что сокращение непроизводственных потерь времени возможно лишь на основе интеграции производства, которая позволяет, в принципе, довести станочное время в общем цикле изготовления до 90 %, машинное время в рамках станочного также до 90 %. При этом имеется в виду также интеграция производства, которая допускала бы непрерывную трехсменную эксплуатацию оборудования, в том числе и малолюдную ночную смену.



На рис. 2.1 показан баланс времени использования производственного оборудования, откуда следует, что наиболее мощным резервом повышения коэффициента использования оборудования является трехсменная работа.

Практика показала, что в принципе правильная идея – связать интеграцию с безлюдной технологией – достаточно трудноосуществима, поскольку требует решения целого комплекса сложных проблем. В числе этих проблем – резкое повышение надежности оборудования и систем управления на основе МП-х систем.

Объекты автоматизации в машиностроении:

¨ станки: токарные, фрезерные, сверлильно-расточные, шлифовальные, многоцелевые (обрабатывающий центр), зубообрабатывающие, электроэрозионные и др.;

¨ периферия станков: роботы, накопители палет, блоки инструментальных магазинов и др.;

¨ транспортные системы: робокары, конвейеры и др.

¨ накопительные системы: автоматизированные склады с кранами-штабелерами, станции комплектации и др.;

¨ вспомогательные системы: контрольно-измерительные машины, станции мойки-сушки и т.д.

Рис. 2.1. Баланс времени использования производственного
оборудования

Множество отдельных микропроцессорных систем автоматизации должны быть объединены в единую – локальную вычислительную сеть. C позиций производительности и гибкости системы автоматизации в машиностроении можно классифицировать по уровню гибкости и производительности (рис. 2.2).

Рис. 2.2. Классификация системы автоматизации в машиностроении:
x – закрепленная за оборудованием номенклатура деталей (число партий);
y – число деталей в партии; 1 – универсальные станки с ручным
управлением; 2 – станки с ЧПУ; 3 – многооперационные станки;
4 – гибкие производственные модули (ГПМ); 5 – гибкие производственные участки (ГПУ); 6 – гибкие линии, цехи; 7 – автоматические линии

Таблица 2.1

Производство станков в основных странах-производителях

Страна- производитель Станки Станки с ЧПУ/ %-ная стоимость от всех станков Роботы
СЭВ
СССР 1,6/5,2 % 8,9/24 % 21,0/47 %
Китай
США 1,9/19 % 8,9/34 % 5,0/44 % 27,1 9,4
Япония 1,5/7,8 % 22,1/50 % 35,3/70 % 116,0 46,8
ФРГ 0,8/8,3 % 4,7/28 % 14/65 % 12,4 4,8

Необходимо иметь в виду, что количество станков в машиностроении в 1,5 раза больше числа станочников. Однако потребность в станках с ЧПУ на 1990 год была не удовлетворена (табл. 2.1).

Механизация и автоматизация производственных процессов является одним из главных направлений технического прогресса. Цель механизации и автоматизации - облегчить труд человека, оставляя человеку функции обслуживания и контроля, повысить производительность труда и улучшить качество изготовляемых изделий.

Рис. 3.2. Манипулятор модели АШ-НЮ-1, используемый для механизации погрузочных операций, в том числе загрузки оборудования

Механизация - направление развития производства, характеризуемое применением машин и механизмов, заменяющих мускульный труд рабочего (рис. 3.2).

По степени технического совершенства механизация делится на следующие виды:

    частичная и малая механизация, характеризуется применением простейших механизмов, чаще всего передвижных. Малая механизация может охватить части движений, оставляя немеханизированными многие виды работ, операций, процессов. К механизмам малой механизации могут быть отнесены тележки, простые подъемные средства и др.;

    полная, или комплексная механизация, включает в себя механизацию всех основных, вспомогательных, установочных и транспортных операций. Этот вид механизации

    характеризуется применением достаточно сложного технологического и подъемно-транспортного оборудования.

Высшей ступенью механизации является автоматизация. Автоматизация означает применение машин, приборов, аппаратов, приспособлений, позволяющих осуществлять производственные процессы без непосредственного участия человека, а лишь под его контролем. Автоматизация производственных процессов неизбежно связана с решением процессов управления, которые также должны быть автоматизированными. Отрасль науки и техники, которая решает системы управления автоматическим оборудованием, называют автоматикой. Автоматика основывается на управлении, контроле, сборе и переработке информации об автоматическом процессе при помощи технических средств - специальных приборов и устройств. Автоматизированная система управления (АСУ) основывается на применении современной электронно-вычислительной техники и электронно-математических методов в управлении производством и призвана способствовать повышению его производительности.

Автоматизация производственных процессов также делится на две части:

частичная автоматизация, охватывает часть выполняемых операций при условии, что остальные операции выполняются человеком. Как правило, автоматически выполняется непосредственное воздействие на изделие, т. е. обработка, а загрузочные операции заготовок и повторное включение оборудования производится человеком. Такое оборудование называется полуавтоматическим;

полная или комплексная автоматизация, характеризуется автоматическим выполнением всех операций, в том числе и загрузочных. Человек только заполняет загрузочные устройства заготовками, включает автомат, контролирует его действия, осуществляя подналадку, смену инструмента и удаление отходов. Такое оборудование называется автоматическим. В зависимости от объема внедрения автоматического оборудования различаются автоматические линии, автоматический участок, цех и завод.

Как показала практика, обыкновенные схемы автоматизации и комплексной автоматизации эффективно применяются только в крупносерийном и массовом производстве. В многономенклатурном производстве, где требуется частая переналадка потока, обыкновенные схемы автоматизации мало пригодны. Оборудование, оснащенное стационарными системами автоматизации, не позволяет переходить на управление с ручным режимом. Под обыкновенной схемой автоматизации подразумевают применение загрузочных устройств (склизов, лотков, бункеров, питателей и др.) и обрабатывающего оборудования, приспособленного для выполнения автоматических операций. Обработанные изделия удаляются с помощью устройства для приема обработанных изделий (склизы, лотки, магазины и др.).

Автооператоры и механические руки, давно применяемые в обыкновенных схемах автоматизации, послужили прототипами для нового вида автоматизации. Новый вид автоматизации с применением промышленных роботов (ПР) позволяет решить вопросы, которые не могут быть решены с помощью обыкновенных схем автоматизации. Промышленные роботы, по замыслу их разработчиков, предназначены для замены человека на опасных для здоровья тяжелых и утомительных работах. Они основываются на моделировании двигательных и управляющих функций человека.

Промышленные роботы решают сложные процессы сборки изделий, сварку, окраску и другие сложные технологические операции, а также загрузку, транспортировку и складирование деталей. Новый вид автоматизации имеет ряд качественно отличающих его от других видов свойств, дающих ПР значительные преимущества перед обыкновенными схемами:

    высокие манипуляционные свойства, т. е. способность перемещать детали по сложным пространственным траекториям;

    собственную систему привода;

    систему программного управления;

    автономность ПР, т. е. невстроенность их в технологическое оборудование;

    универсальность, т. е. способность перемещать в пространстве изделия различного типа;

    сопрягаемость с достаточно большим числом типов технологического оборудования;

    переналаживаемость на различные сменяющие друг друга виды работ и изделий;

    возможность отключения ПР и перехода на ручное управление оборудованием.

В зависимости от участия человека в процессах управления роботами их делят на биотехнические, автономные.

Биотехнические - это дистанционные копирующие роботы, управляемые чаловеком. Управление роботом может быть выполнено с пульта при помощи систем рукояток, рычагов, клавишей, кнопок или посредством «надевания» на руки, ноги или корпус человека специальных устройств. Эти устройства служат для воспроизведения движений человека на расстоянии с необходимым увеличением усилий. Такие роботы называются роботами-экзоскелетонами. Роботы полуавтоматического действия также относятся к биотехническим роботам.

Автономные роботы работают автоматически при помощи программного управления.

За относительно долгую историю развития робототехники создано уже несколько поколений роботов.

Роботы первого поколения (программные роботы) характеризуются жесткой программой действий и элементарной обратной связью. К ним обычно относятся промышленные роботы (ПР). В настоящее время эта система роботов наиболее разработана. ПР первого поколения делятся на универсальные, целевые ПР подъемно-транспортной группы, целевые роботы производственной группы. Кроме того, роботы распределяются на типоразмерные ряды, на ряды по максимальной производительности, по радиусу обслуживания, по числу степеней подвижности и т. д.

Роботы второго поколения (очувствленные роботы) обладают координацией движения с восприятием. Программа управления этими роботами осуществляется при помощи ЭВМ.

К роботам третьего поколения относятся роботы с искусственным интеллектом. Эти роботы создают условия для замены человека в области квалифицированного труда, имеют способности к адаптации в процессе производства. Роботы третьего поколения способны понимать язык, могут вести диалог с человеком, планировать поведение и др.

Осуществляя комплексную автоматизацию технологических процессов участков, цехов и заводов, создают роботизированные технологические комплексы (РТК). Роботизированныйтехнологический комплекс представляет собой совокупность технологического оборудования и промышленных роботов. РТК размещается на определенной площади и предназначается для одной или нескольких операций в автоматическом режиме. Оборудование, входящее в РТК, делится на оборудование обрабатывающее, обслуживающее и оборудование контроля и управления. К обрабатывающему оборудованию относится основное технологическое оборудование, модернизированное для работы с промышленными роботами. Обслуживающее оборудование содержит устройство для размещения деталей на входе в РТК, межоперационные транспортирующие ч накопительные устройства, устройства для приема обработанных изделий, а также промышленные роботы (рис. 3.3). Оборудование контроля и управления обеспечивает режим работы РТК и качество выпускаемой продукции.

Pиc. 3.3. Напольный робот с горизонтальной выдвижной рукой и консольным механизмом подъема ПР-4

Повышению эффективности применения промышленных роботов способствует рациональное сокращение номенклатуры ПР и улучшение их приспособляемости (адаптивности). Это достигается типизацией ПР. Производится всесторонний анализ производства, группировка объектов роботизации и установление типов и основных параметров ПР. Типизация ПР является основой для развития их унификации, которая должна быть направлена на обеспечение возможности создания роботов путем агрегатирования. Чтобы обеспечить принцип агрегатирования, производится стандартизация: 1) присоединительных размеров приводов, передаточных механизмов и датчиков обратной связи; 2) рядов выходных параметров приводов (мощностей, скоростей и т. п.); 3) методов связи устройств программного управления с исполнительными и измерительными устройствами.

Результатом работ по унификации ПР должно явиться создание их оптимального типажа и системы агрегатномодульного построения. Агрегатно-модульная система построения промышленных роботов - это совокупность методов и средств, обеспечивающих построение разных типоразмеров ПР кз ограниченного числа унифицированных узлов (модулей и агрегатов). Она позволяет использовать минимальное число серийно выпускаемых функциональных узлов, которые выбирают по специальным промышленным каталогам. Это дает возможность в многономенклатурном производстве быстро перестроить роботизированные системы машин на выпуск новой продукции. На базе ПР с агрегатно-модульным построением основывается гибкое автоматизированное производство (ГАП).

Планирование внедрения механизированного и автоматизированного оборудования связано с анализом производства. Анализ производства сводится к выявлению ряда условий, которые способствуют применению этого оборудования. Анализу не подлежит производство, связанное с применением тяжелого ручного труда. Механизация и автоматизация тяжелого ручного труда является первостепенной задачей и не зависит от результатов экономического расчета.

Проектирование механизации и автоматизации технологических процессов необходимо начинать с анализа существующего производства. Во время анализа выясняются и уточняются те особенности и специфические отличия, на базе которых выбирается тот или иной тип оборудования. Предпроектная стадия разработки механизации и автоматизации производственных процессов включает в себя решение ряда вопросов.

1. Анализ программы выпуска изделий включает в себя изучение: годовой программы выпуска изделии, стабильности и перспективы выпуска; уровня унификации и стандартизации; специализации и централизации производства; ритмичности производства; грузооборота (грузооборот представляет собой общую массу прибывающего и отправляемого груза - для погрузочных операций). Необходимо запомнить, что эффективность механизации и автоматизации процесса в большой степени зависит от программы выпуска изделий. Устройства механизации и автоматизации в массовом и мелкосерийном производстве будут значительно различаться.

2. В анализ технологического процесса изготовления изделий, подлежащего механизации и автоматизации, входит: определение пригодности технологического процесса для механизации и автоматизации; выявление недостатков действующего технологического процесса; определение трудоемкости основных и вспомогательных операций;

сравнение действующих режимов изготовления с режимами, рекомендуемыми в справочниках; анализ применения групповой технологии; разделение технологического процесса на классы.

К первому основному классу относятся процессы, которые требуют ориентации заготовки (детали) и характеризуются наличием обрабатываемого инструмента. Эти процессы свойственны основной номенклатуре изделий, которые изготовляются резанием, давлением или собираются, контролируются и т. п. Ко второму основному классу относятся процессы, которые не требуют ориентации заготовки (детали), в них вместо обрабатывающего инструмента используют рабочую среду. К ним относятся термическая обработка, галтовка, мойка, сушка и т. п.

К первому переходному классу относятся процессы, которые требуют ориентации заготовки (детали), но инструмент отсутствует, и его роль выполняет рабочая среда; нанесение местных покрытий, контроль твердости намагничиванием и т. п. Ко второму переходному классу относятся процессы, которые не требуют ориентации заготовки (детали), но в них участвует обрабатывающий инструмент; изготовление деталей методом порошковой металлургии, производство металлокерамических и керамических деталей и др.

3. Анализ конструкции изделия, при этом устанавливается четкость обработки изделия и полнота технических требований к изготовляемой детали; исследуется форма, размеры, материалы, масса изделия и устанавливается пригодность для того или иного вида механизации и автоматизации.

4. Подбор информации по разным видам механизации и автоматизации. До начала работы должны быть известны все приемы и технологические схемы, а также оборудование, приборы и средства, освоенные промышленностью. Перед принятием решения производится поиск информации по производству аналогичных изделий в стране и за рубежом.

5. Экономический расчет эффективности предполагаемой механизации и автоматизации производства.

6. Разработка и согласование рекомендаций по изменению действующих производственных условий. Рекомендации разрабатываются на основе проведенного анализа и к ним могут быть отнесены: проведение унификации, т. е. приведение к одному типоразмеру близких по конструкций изделий; изменение последовательности технологических операций или применение совершенно нового прогрессивного технологического процесса; использование группового технологического процесса близких по конструкции изделий; применение нового вида заготовки изделия; уточнение и при необходимости изменение технических требований чертежа; изменение формы и размеров изделия; изменение материала изделия.

7. Принятие решения по использованию определенного принципа механизации и автоматизации и составление технического задания на разработку.


МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ

РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ
ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

ВЯТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
Кафедра технологии автоматизированного

Машиностроения

Ю.Л.Апатов
АВТОМАТИЗАЦИЯ ПРОИЗВОДСТВЕННЫХ ПРОЦЕССОВ В МАШИНОСТРОЕНИИ (АППМ)

Конспект лекций для студентов специальности 120100 – «Технология

Машиностроения» дневной, заочной и ускоренной форм обучения.

^

Киров, 2001

Дисциплина «Автоматизация производственных процессов в маши-ностроении (АППМ)».

Составитель: к.т.н., доцент кафедры ТАМ Апатов Ю.Л.

1. Основные понятия и определения. Механизация и автоматизация производства. Автоматические и автоматизированные процессы и оборудо-вание. Степень автоматизации.

Механизация – начальная ступень при переходе от автоматизации производства, она направлена на замену ручного труда машинным, при этом в её основу положено применение отдельных устройств или приспособлений, а обьектом её служит отдельно взятая технологическая операция (меха-низированная сборка или использование пневмовинтовёрта).

^ Комплексная механизация – следующая ступень, заключающаяся в обхвате средствами миеханизации нескольких смежных техзнологических операций.

Автоматизация – савокупность мероприятий технологического и ор-ганизационного плана, направленная на эффективное управление техпроцес-сом механической обработки или сборки. При этом управлению подверга-ются режимы обработки, точность обработки, время выполнения операций и т.д., а обьектом управления является сам техпроцесс.

^ Комплексная автоматизация – высшая степень автоматизации, при ко-торой обьектом является не только техпроцесс, но и часть производственного процесса (испытания изделия, консервация, упаковка, транспортировка и т.д.).

Основным направлением современного развития автоматизации яв-ляется создание так называемых ГПС. В зависимости от степени автоматиза-ции процессы обработки деталей, да и само оборудованое подразделяют на две большие группы:

1 – Автоматизированные процессы – то есть такие процессы, которые управляются частично с использованием человека – оператора.

2 – Автоматические процессы – производимые без участия человека в качестве управляющего элемента.

2. Автоматы и полуавтоматы. Понятие о рабочем цикле. Автоматичес-кий рабочий цикл. Симметричный и асимметричный циклы, их применение.
В зависимости от степени автоматизации оборудования различают:

1 – Полуавтоматы – для их характерно применение ручной загрузки деталей на станок и использование полеавтоматического цикла работы (т.е. для повторения каждого рабочего цикла необходимо вмешательство опера-тора.

2 – Автоматы – для них характерна автозагрузка деталей и они реали-зуют автоматический цикл работы.

Рабочий цикл – отрезок времени, необходимый для срабатывания данного автомата, либо промышленного робата и т.д. при выполнении задан-ной программы. В простейшем случае он состоит из суммы времени на ос-новные технологические переходы, а также на вспомогательные перемеще-ния (инструмент относительно детали). Это так называемое неперекрывае-мое время.

Т ц = t o (м) + t в, (1)
где t o (м) – основное (или машинное) время работы машины. Оно за-трачивается непосредственно на обработку детали, т.е. на изменение её раз-меров, формы и состояния поверхности.

T в – вспомогательное (неперекрываемое)время, т.е. время когда обработка не производится. (Подвод инструмента к детали, установка детали на станке).

Схема рабочего цикла – характерристика рабочего цикла, она показы-вает порядок перемещения инструмента, характер перемещения (м/мин), а также величину этого перемещения (мм) при работе в автоматическом и по-луавтоматическом режиме.

Существует 4 схемы рабочих циклов:
1 – ^ Асимметричный рабочий цикл . Интрумент выполняет следующие
этапы:


Рисунок 1 – Асимметричный рабочий цикл в применении для операции сверления
Быстрый подвод. В этом случае сверло подходит к детали не касаясь её.

Рабочая подача.
РП = L + L 1 + L 2 (2)
Ускоренный возврат инструмента в исходное положение (быстрый отвод).
БО = РП + БП (3)
На рисунке 1 представлена схема обработки сверлением.

На схеме обозначено:

L – глубина обработки (толшина детали);

L1 – недобег инструмента, исключающий касания инструментом де-тали на ускореной подаче;

L2 – недобег, назначаемый для устранения возможных заусенцев на детали.

L1, L2 назначаются конструктивно в пределах 3-4 мм.

Указанный рабочий цикл находит наибольшее применение для таких операций как сверление, развёртывание, зенкерование и т.д.
^ 2– Симметричный рабочий цикл .
Цикл характерен для нарезания резьбы, причём перед началом медленного отвода предусматривается реверс вращения инструмента.

Примечание: схемы рабочих циклов позволяют перейти к определению времени выполнения данных переходов, зная величину подачи и величину перемещений. Рабочее перемещение назначается из техпроцесса. а само время выполнения переходов используется для расчёта времени рабочего цикла, а также в последствии для расчёта производительности станка.
РП = 20 БП = 20

МО =20 БО = 20

3 – Упрощеный рабочий цикл . Применяется в случаях, когда инст-румент удаётся расположить в непосредственной близости от конца детали.

4 – Сложный рабочий цикл . Применяется при сверлении глу-боких отверстий с периодическим отводом стружки за счёт перио-дического отвода сверла.

РП 1 = БП =

РП 3 =
БО 3 =
3. Эффективность автоматизации. Цель и задачи. Современное состо-яние и направление развития автоматизации.
Эффективность автоматизации заключается в следующем:

I – Повышается производительность механической обработки и сборки за счёт сокращения основного времени, а в большей степени – вспо-могательного.

II – Отмечается снижение трудоёмкости обработки деталей.

III – Повышается качество и однородность продукции, за счёт исключения субъективного фактора (влияния самого человека).

IV – Сокращаются занимаемые производственные площади за счёт сокращения проходов между станками и более полного использования объема здания (пространство между станками и над ними) (верхний транспорт).

V– Снижается себестоимость продукции за счёт зарплаты высвобо-ждающихся рабочих.

VI – Улучшаются условия труда, исключаются из техпроцесса утомительные и однообразные операции ранее выполнявшиеся в ручную.
Все выше перечисленные факторы являются целью мероприятий по автоматизации. К задачам автоматизации дополнительно относятся: автома-тизация транспортирования деталей, их контроль, складирование и т.п.

В настоящее время в машиностроении автоматизация получила наи-большее распространение прежде всего в крупносерийном и массовом произ-водстве (автомобиле- тракторостроение и т.д.). Последнее можно объяснить: относительной простотой оборудования, практически неизменной конструк-цией деталей и постоянством применяемой оснастки и инструмента.

В значительной степени отстаёт автоматизация мелко- и среднесерий-ного производства в следствие его особенностей. Индивидуальное или еди-ничное производство вообще не является на сегодняшний день объектом ав-томатизации. Значительные сложности при автоматизации представляет сбо-рочное производство, а именно:

I – непостоянство формы и размеров деталей поступающих на сборку (уплотнения и т.д.);

II – Чрезвычайно большое разнообразие деталей, входящих в изделие, это диктует необходимость проектирования большого числа устройств и ро-ботов.

III – Требуется очень высокая точность ориентации деталей перед их соединением.

IV – Недостаточная производительность существующих видов оборудования, которое неможет конкурировать с рабочим-сборщиком.

Современное производство большей частью (75 – 80%) является се-рийным производством. На процесс автоматизации в этих условиях влияют следующие факторы:

А – частая сменяемость деталей и конструкций изделия;

Б – постоянно сокращаются сроки выпуска этих деталей с одновре-менным увеличением номенклатуры.

Номенклатура - Количество типоразмеров деталей, проходящих через данную автоматическую линию.

В – Постоянно увеличивающиеся требования по точности деталей и качеству их обработки;

Г – Очень малая доля основного технологического времени в общем производственном цикле производства данной детали.

Рисунок 2 – Диаграмма распределения времени обработки деталей

Т1 – время всего производственного цикла получения деталей;

Т2 = Т1 ∙ 0,05 – среднее время нахождения детали на станке. Осталь-ное время расходуется на ожидание деталью очереди на обработку, транс-портировку, контроль и т.п. вспомогательные операции;

Т3 = Т2 / 3 – время непосредственно затрачиваемое на обработку де-тали, т.е. на изменение размеров и формы поверхностей, их взаимного распо-ложения и их механических свойств. Остальное время идёт на загрузку и раз-грузку детали на станок, на контроль без снятия детали со станка, на время управления станком и т.д.

Вывод: в современном производстве обьектом автоматизации могут служить не только основные технологические операции, но и все перечис-ленные вспомогательные операции. Причина – время Т3 уже предельно со-кращено и большого выигрыша при сокращении времени не даёт.
4. Пути повышения производительности труда в серийном производс-тве, особенности его автоматизации. Актуальность разработки ГПС, тре-бования, предъявляемые к ним со стороны техпроцесса.
Основным направлением автоматизации серийного производства яв-ляется создание ГПС. Их особенность в том, что это системы.состоящие из основного технологического оборудования и комплекта вспомогательного оборудования, а также переналаживемой оснастки, обьединённое общей сис-темой управления и предназначенное для получения деталей заданной но-менклатуры в заданном обьёме выпуска в заданные сроки и требуемого каче-ства. Среди ГПС выделяют две разновидности:

1 – ГАЛ – несколько единиц технологического оборудования (стан-ков) расположенных и связанных между собой транспортными устройствами строго в порядке выполнения операций.

Относительная простота конструкции таких линий.

Применяется переналадка станков на различные детали, что обеспе-чивает «гибкость» данной линии.

– Нет возможности изменить порядок обработки деталей на станках (низкая «маршрутная гибкость»)


Ст.№1

Ст.№n


2 – ГАУ – в этом случае станки расположены произвольно к мар-шруту обработки детали.

(+) Возможность изменить порядок использования оборудования (вы-сокая «маршрутная гибкость»). Этим достигается наиболее полная загрузка оборудования, а критерием выбора маршрута является минимальная перена-ладка станка.

(–) Большая занимаемая площадь (из – за)транспортных систем).

(–) Более сложные и дорогие транспортные средства (устройства).

В основе применяемого технологического оборудования для ГПС ле-жат станки с ЧПУ и промышленные роботы. Существуют более простые раз-новидности ГПС:

ГПМ – гибкий производственный модуль – одна единица технологи-ческого оборудования (многоцелевой станок), оснащённая устройством за-грузки и разгрузки деталей (промышленный робот), и имеется накопитель для заготовок (не большой ёмкости), комплект режущего инструмента (рас-положенный в магазине станка), необходимая оснастка (приспособления), контрольно-измерительные механизмы и устройства, устройства диагно-стики самого оборудования, общая единая система управления.

РТК – роботизированный технологический комплекс – одна единица промышленного робота, выполняющего основную технологическую опера-цию (сборка, сварка, зачистка и др. операции по виду инструмента), для этого он дополнительно оснащается: питателем заготовок, приспособлениями, за-хватным устройством, дополнительно ориентирующими механизмами, тре-буемым инструментом, общей системой управления (для этих функций чаще всего используют дополнительные «технологические» каналы системы управления роботом).
5. Основные количественные характеристики автоматизированных технологических процессов. Производительность механообработки и сборки. Разновидности и методика определения.

Принципиально новые технологические процессы требуют создания нового технологического оборудования. Поэтому для их быстрой реализации необходима комплексная разработка технологии и технологического оборудования.

Важнейшая проблема развития любого современного производства - автоматизация технологических процессов.

Особенно актуальна она для машиностроения, и вот почему. Во-первых, здесьочень велика трудоемкость производства. Приведем лишь два примера: изготовление паровой турбины мощностью 500 тысяч киловатт по нормам занимает 300 тысяч часов, создание листопрокатного стана «2000» - 5,2 миллиона часов. Во-вторых, из 10 миллионов рабочих-машиностроителей около половины занято ручным трудом.

Автоматизация машиностроения не только увеличивает производительность труда, устраняет ручной тяжелый и монотонный труд, но и повышает качество и надежность изготовляемых изделий, улучшает коэффициент использования оборудования, сокращает цикл производства.

В чем суть автоматизации любого технологического процесса? Автоматизация должна обеспечить без участия человека заданные кинематику и параметры рабочего процесса с требуемой последовательностью и точностью.

Сложность автоматизации машиностроения заключается в том, что технология здесь не непрерывная, а дискретная и к тому же чрезвычайно разнообразная. Машиностроительное производство делает миллионы разных деталей, причем изготовление каждой детали связано с выполнением большого количества технологических операций. Литье, ковка, сварка, термообработка, механическая обработка, упрочнение, нанесение покрытий, неразрушающий контроль, сборка, испытание... И каждый из этих и многих других не упомянутых здесь технологических процессов имеет еще и различные варианты в зависимости от используемых материалов, формы, размеров и серийности деталей, требований к точности, эксплуатационным свойствам и т. д.

В машиностроении массовое производство составляет лишь 12%, и даже вместе с крупносерийным - всего 29%, а на долю серийного и индивидуального производств приходится 71%. Это осложняет решение проблемы автоматизации, так как при мелкосерийном производстве нужна гибкая, быстро перестраиваемая система автоматического управления технологическими процессами. Наиболее целесообразна здесь двухиерархическая система управления: непосредственно каждым технологическим процессом управляет своя малая ЭВМ, а управление всем производством с учетом получаемой от них информации осуществляют уже обычные ЭВМ.

Такой путь весьма перспективен для автоматизации машиностроения. Но, конечно, и для его реализации необходимо совершенствовать технологическое оборудование и технологические процессы.

До настоящего времени закономерности многих технологических процессов машиностроения недостаточно раскрыты, и рабочие параметры регулируются эмпирическими приемами. На заводах из-за влияния масштабного фактора и других производственных условий недостаточно изученную технологию приходится отрабатывать заново.

Проблемы эти становятся все более актуальными, так как создание новой техники связано с усложнением конструкций, применением труднообрабатываемых материалов, повышением требований к качеству, надежности, эксплуатационным характеристикам.

В заготовительном производстве наиболее эффективны непрерывные технологические процессы, например, непрерывная разливка стали, прокатка заготовок, гибка пространственных пустотелых заготовок из листа и бунтовой ленты. Непрерывные процессы, наиболее благоприятные для автоматизации, обеспечивают наибольшую производительность и экономию металла.

Для улучшения условий автоматизации и механизации сборочных работ, которые очень трудоемки и в серийном производстве в основном выполняются вручную, необходимо совершенствовать конструкции деталей и компоновку машин, повышать точность размерной обработки, оптимизировать допуски и размерные цепи машин.

Автоматизация отдельных технологических операций, конечно, повышает производительность и качество продукции. Но наиболее эффективна комплексная автоматизация последовательно связанных технологических операций. При этом устраняются неточности предыдущих операций, которые могут нарушать работу автомата на последующей операции, обеспечивается синхронизация потока технологических операций, устраняющая простои автоматов.

При мелкосерийном производстве подготовка производства, проектирование и изготовление оснастки, наладка оборудования, установка, выверка изделий, контроль, транспортировка и складирование связаны с большими затратами труда и времени. Поэтому наибольший эффект в машиностроении дает интегральная автоматизация: основные технологические операции автоматизируются совместно с вспомогательными, контрольными и транспортными работами.

Опыт применения интегрально автоматизированных поточных линий в производстве показывает, что производительность труда повышается до четырех раз.

Чтобы комплексные автоматические системы обеспечивали высокую работоспособность и исключали труд наладчиков, управление должно базироваться на принципах адаптации и корректировки рабочих процессов. В этом случае параметры технологического процесса, состояние инструмента, заготовки, ее установка, координация, точность обработки должны контролироваться датчиками, передающими необходимую информацию, на основе переработки которой регулируются параметры рабочих процессов, перемещаются или заменяются инструменты и т. д.

Поточные автоматические линии надо укомплектовывать автоматически управляемым технологическим оборудованием, транспортными средствами, контрольными приборами, кантующими, установочными, съемочными манипуляторами. В ряде случаев требуются точные манипуляторы с большими кинематическими возможностями, а иногда и со слежением и автоматической корректировкой операций. Такие сложные и автоматизированные манипуляторы, заменяющие далеко не простой ручной труд, обычно называют роботами.

Практика показывает, что роботы должны использоваться не только для вспомогательных операций, но также для автоматизации сложных, разнообразных технологических операций, например, пространственной сварки, сборки, обрубки, зачистки, упаковки. Такие операции требуют автоматического слежения и пространственной ориентации, и для их автоматизации роботы должны иметь адаптивное управление.

Большое значение имеет также автоматизация систем технологической подготовки производства , которая должна обеспечивать автоматическое проектирование технологических процессов, анализ технологичности конструкций, определение номенклатуры оснастки, инструмента, разработку программ управления и т. п.

Автоматическое управление технологией не только исключает субъективные ошибки, свойственные ручному труду, но и обеспечивает высокую стабилизацию технологических процессов, корректировку их параметров в связи с колебаниями размеров и свойств заготовок исходных материалов, изменениями состояния оборудования и инструмента.

Даже в тех случаях, когда технологический процесс полностью автоматизирован и обеспечивается его стабильность, проблема автоматизации контроля полностью не устраняется. Поэтому надо развивать автоматические методы и средства анализа химического состава материалов, неразрушающего и метрологического контроля, механических испытаний.

И в заключение отмечу, что автоматизация производства значительно упрощается и дает наибольший экономический эффект с повышением серийности производства. Вот почему важнейшее условие расширения автоматизации - специализация производства и максимальная унификация изделий. Этому принципу технической политики необходимо уделять большое внимание.

Член-корреспондент Академии наук СССР Н. Зорев, директор Центрального научно-исследовательского института технологии машиностроения (ЦНИИТМАШ).

Современное состояние и ближайшие перспективы автоматизации в машиностроении связаны, прежде всего, с переходом от создания отдельных машин и агрегатов к разработке систем автоматических машин, охватывающих различные стадии производственного процесса – от заготовительных до сборочных, с оптимизацией технических решений.

Центр тяжести разработок переносится с массового на серийное производство с широким развитием автоматизации и механизации вспомогательных процессов, причем автоматизации не только технологических операций, но и функций управления.

Комплексная автоматизация базируется на непрерывном совершенствовании технических средств (от простейших механизмов до сложных электронных систем; СПУ, электронных вычислительных и управляющих машин и др.); на широком использовании общности методов и средств автоматизации на различных стадиях производственного процесса, на применении методов унификации.

Развитие автоматизации на современном этапе характерно смещение центра тяжести разработок с массового на серийное производство, составляющую основную часть машиностроительной отрасли (около 80% всей машиностроительной продукции выпускается на заводах серийного и единичного производства).

Другая характерная особенность современной автоматизации – расширение арсенала технических средств и, как следствие, многовариантность решения задач автоматизации производственных процессов.

Стратегия комплексной автоматизации машиностроительного производства как основа технической политики определяется рядом аспектов, в том числе:

1) правильным пониманием содержания и основной направленности работ по автоматизации;

2) объективной оценкой во времени перспективности и целесообразности области применения новых методов и средств автоматизации, их состоянием и взаимосвязью с известными, традиционными.

Рассмотрим эти аспекты более подробно. Автоматизация производства часто трактуется как процесс замещения функций человека устройствами и системами управления и контроля, т.е. отождествляется с внедрением автоматики. При этом считается, что технологические процессы, конструкции и машин остаются в основном прежними. Это неверно. Содержание производства составляют технологические процессы, именно в них закладываются все потенциальные возможности качества и количества выпускаемой продукции, эффективности производства, а система управления есть лишь форма реализации этих возможностей. Поэтому автоматизация производства в машиностроении представляет собой комплексную конструкторско-технологическую задачу создания новой техники, таких высокоинтенсивных технологических процессов и высокопроизводственных средств производства, которые недоступны для непосредственного выполнения человеком.

Современный токарный автомат – это комплекс технологических и конструктивно-компоновочных решений, характеризуемый многопозиционностью, одновременным функционированием десятков, а в автоматических линиях – сотен механизмов и инструментов. Создание таких систем требует решения многих задач, в том числе автоматизации транспортирования и загрузки деталей, изменения их ориентации, накопления заделов, поворота и фиксации деталей, удаления отходов и т.д. И только при этих условиях может быть эффективным применение автоматического управления.

Автоматически действующие средства производства только тогда перспективны, когда они выполняют производственные функции быстрее и лучше человека.

Сказанное не снижает значения «малой» автоматизации, т.е. оснащение неавтоматизированного оборудования механизмами загрузки и зажима деталей, устройствами для управления циклом и т.д., особенно когда такие средства являются типовыми. Однако к этой частности не сводится процесс автоматизации.

Чрезвычайную актуальность в автоматизации приобретает проблема правильной, объективной оценки и разумного внедрения новейших методов и средств автоматизации. Любое техническое новшество, сколь бы перспективным оно ни было, проходит ряд стадий: идея – опытная конструкция (способная лишь функционировать) – надежно работающая конструкция – экономически эффективная конструкция. Каждая стадия характеризуется совершенствованием параметров, которые можно свести к формуле «быстродействие – надежность – стоимость». И лишь когда эти параметры укладываются в технико-экономические допуски, данное новшество созревает для производственного внедрения. Поэтому в технической политике недопустимо как запаздывание с разработкой первичной идеи, так и реализация недостаточно созревших решений.

Один из принципиальных вопросов комплексной автоматизации – оптимальное сочетание новейших методов и средств с традиционными. В автоматических машинах и системах для массового производства широко используются принципы дифференциации и концентрации операций, совмещения их во времени, что составляет основу высокой производительности и эффективности. В подавляющем же большинстве современные станки с ЧПУ – одношпиндельные. Поэтому в условиях стабильной работы, без переналадок, производительность многошпиндельных агрегатных станков-полуавтоматов в десятки раз выше, чем многооперационных полуавтоматов, а стоимость ниже. В опытном производстве, где номенклатура изделий не повторяется, необходим широчайший диапазон переналадок технологического оборудования, который можно обеспечить лишь при использовании ЭВМ. В стабильном же производстве, с постоянной номенклатурой выпускаемой продукции, серийная обработка производится лишь потому, что масштабы выпуска не позволяют загрузить каждую единицу оборудования одними и теми же изделиями. Здесь участки из универсальных станков-полуавтоматов с ЧПУ или технологических комплексов с управлением от ЭВМ может заменить один переналаживаемый многошпиндельный агрегатный станок-полуавтомат, на котором несколько деталей обрабатываются одновременно десятками инструментов, производительность его несоразмерно выше, чем одноинструментальных станков, а переналадка значительно короче.

Поэтому выпуск одношпиндельных станков с ЧПУ с технологическими и компоновочными схемами, унаследованными от неавтоматизированного производства, следует считать правомерным лишь на ранних этапах их развития. Неизбежен массовый переход к использованию многошпиндельных и многопозиционных станков с ЧПУ, начиная с простейших, выполняющих параллельную обработку нескольких деталей по одной программе. Системы с распределительными валами, кулачками и копирами, по-видимому еще долго будут преобладающими при автоматизации управления в массовом производстве, несмотря на то, что в их конструкции мало электроники и нет адаптации. Системы с ЧП, прямого управления от ЭВМ и др. мобильны, и поэтому эффективны при автоматизации серийного, а будущем и единичного производства. Их значимость для массового производства не в замене сложившихся технических решений, а в их дополнении, в реализации невыполнимых ранее функций управления. Так, применение АСУ ТП с функциями технической и статистической диагностики работы автоматических линий должно стать основой высокопроизводительной эксплуатации линий, сокращения их простоев по техническим и организационным причинам.

Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!