Служба защиты прав потребителей

Производственное множество и его формальные свойства. Технология как ограничение. Производственное множество и его свойства. Технологически и экономически эффективные способы производства. Производственные множества и их свойства

Формализующее множество всех технологически допустимых векторов чистых выпусков продукции.

Определение

Пусть в экономике имеется N благ. В процессе производства из них n благ расходуются. Обозначим вектор этих благ (затрат) x (размерность вектора n). Другие m=N-n благ выпускаются в процессе производства (размерность вектора - m). Обозначим вектор этих благ y. Тогда вектор z=(-x,y) (размерность - N) называется вектором чистых выпусков . Совокупность всех технологически допустимых векторов чистых выпусков и составляют технологическое множество . Фактически это некоторое подмножество пространства R^N.

Для читателей, испытывающих трудности с понятиями вектор, множество:

вектор - список благ, каждое благо описано своим количеством, набор чисел;

все блага, израсходованные в производстве записываются в начале вектора чистого выпуска z со знаком минус (-x), произведенные со знаком плюс (y);

все возможные для производства сочетания образуют технологическое множество (сочетаний выпуска).

Свойства

  • Непустота : технологическое множество не пусто. Непустота означает принципиальную возможность производства.
  • Допустимость бездеятельности : нулевой вектор принадлежит технологическому множеству. Это формальное свойство означает, что нулевой выпуск при нулевых затратах является допустимым.
  • Замкнутость : технологическое множество содержит свою границу и предел любой последовательности технологически допустимых векторов чистых выпусков тоже принадлежит технологическому множеству.
  • Свобода расходования : если данный вектор z принадлежит технологическому множеству, то ему принадлежит и любой вектор z"\leqslant z. Это означает, что формально тот же объем выпуска можно производить и большими затратами.
  • Отсутствие "рога изобилия" : из неотрицательных векторов чистого выпуска технологическому множеству принадлежит только нулевой вектор. Это означает, что для производства продукции в положительном количестве необходимы ненулевые затраты.
  • Необратимость : для любого допустимого вектора z, противоположный вектор -z не принадлежит технологическому множеству. То есть из выпущенной продукции невозможно произвести ресурсы в том же количестве, в котором они используются для производства этой продукции.
  • Аддитивность : сумма двух допустимых векторов также является допустимым вектором. То есть допускается комбинирование технологий.
  • Свойства, связанные с отдачей от масштаба производства:
    • Невозрастающая отдача от масштаба : для любого \lambda \in (0;1) \lambda z
    • Неубывающая отдача от масштаба : для любого \lambda >1 если z принадлежит технологическому множеству, то \lambda z также принадлежит технологическому множеству.
    • Постоянная отдача от масштаба : одновременное выполнение двух предыдущих свойств, то есть для любого положительного \lambda если z принадлежит технологическому множеству, то \lambda z также принадлежит технологическому множеству. Свойство постоянной отдачи означает, что технологическое множество является конусом.

8. Выпуклость : для любых двух допустимых векторов z_1, z_2 допустимыми являются также любые векторы \alpha z_1 +(1-\alpha)z_2, где 0 < \alpha \leqslant 1. Свойство выпуклости означает возможность "смешивать" технологии. Оно, в частности, выполнено, если технологическое множество обладает свойством аддитивности и невозрастающей отдачи от масштаба. Более того, в этому случае технологическое множество является выпуклым конусом.

Эффективная граница технологического множества

Допустимую технологию z называют эффективной , если не существует другой, отличной от неё, допустимой технологии z"\geqslant z. Множество эффективных технологий образуют эффективную границу технологического множества.

Если выполнено условие свободы расходования и замкнутости технологического множества, то невозможно бесконечно увеличивать производство одного блага без уменьшения выпуска других. В этом случае для любой допустимой технологии z есть эффективная технология z" \geqslant z. В таком случае, вместо всего технологического множества можно использовать только его эффективную границу. Обычно эффективную границу можно задать некоторой производственной функцией.

Производственная функция

Рассмотрим однопродуктовые технологии (-x,y), где y - вектор размерности m=1, а x - вектор затрат размерности n. Рассмотрим множество X, включающее в себя все возможные векторы затрат x, таких, что для каждого x существует y, такой что векторы чистых выпусков (-x,y) принадлежат к технологическому множеству.

Числовая функция f(x) на X называется производственной функцией , если для каждого данного вектора затрат x значение f(x) определяет максимальное значение допустимого выпуска y (такого, что вектор чистого выпуска (-x,y) принадлежит технологическому множеству).

Любая точка эффективной границы технологического множества представима в виде (-x,f(x)), а обратное верно в том случае, если f(x) является возрастающей функцией (в таком случае y=f(x) - уравнение эффективной границы). Если технологическое множество обладает свойством свободы расходования и допускает описание производственной функцией, то технологическое множество определяется на основе неравенства y \leqslant f(x).

Для того, чтобы технологическое множество можно было бы задавать с помощью производственной функции достаточно, чтобы для любого x множество F(x) допустимых выпусков при данных затратах x, являлось ограниченным и замкнутым. В частности, это условие выполнено, если для технологического множества выполнены свойства замкнутости, невозрастающей отдачи от масштаба и отсутствия рога изобилия.

Если технологическое множество выпукло, то производственная функция вогнута и непрерывна на внутренности множества X. Если выполнено условие свободы расходования, то f(x) является неубывающей функцией (в этом случае также из вогнутости функции следует выпуклость технологического множества). Наконец, если выполнены одновременно и условие отсутствия рога изобилия и допустимость бездеятельности, то f(0)=0.

Если производственная функция является дифференцируемой, то можно определить локальную эластичность масштаба следующими эквивалентными способами:

e(x)=\frac {d f(\lambda x)}{d \lambda} \cdot \frac {\lambda}{f(x)}|_{\lambda=1}=\frac {f"(x)x}{f(x)}

где f"(x) - вектор-градиент производственной функции.

Определив таким образом эластичность масштаба можно показать, что если технологическое множество обладает свойством постоянной отдачи от масштаба, то e(x)=1, если убывающей отдачи от масштаба, то e(x) \leqslant 1, если возрастающей отдачи, то e(x)\geqslant 1.

Задача производителя

Если задан вектор цен p, то произведение pz представляет собой прибыль производителя. Задача производителя сводится к поиску такого вектора z, чтобы при заданном векторе цен прибыль была максимальна. Множество цен благ, при которых эта задача имеет решение, обозначим P. Можно показать, что при непустом, замкнутом технологическом множестве с невозрастающей отдачей от масштаба задача производителя имеет решение на множестве цен P, дающих отрицательную прибыль на так называемых рецессивных направлениях (это векторы z технологического множества, для которых при любом неотрицательном \lambda векторы \lambda z также принадлежат технологическому множеству). В частности, если множество рецессивных направлений совпадает с R^N_-, то решение существует при любых положительных ценах.

Функция прибыли \pi(p) определяется как pz(p), где z(p) - решение задачи производителя при данных ценах (это так называемая функция предложения, возможно многозначная). Функция прибыли является положительно однородной (первой степени), то есть \pi(\lambda p)=\lambda \pi(p) и непрерывной на внутренности P. Если технологическое множество строго выпукло, то функция прибыли является к тому же непрерывно дифференцируемой. Если технологическое множество замкнуто, то функция прибыли выпукла на любом выпуклом подмножестве допустимых цен P.

Функция (отображение) предложения z(p) является положительно однородной нулевой степени. Если технологическое множество строго выпукло, то функция предложения является однозначной на P и непрерывной на внутренности P. Если функция предложения дважды дифференцируема, то матрица Якоби этой функции симметрична и неотрицательно определена.

Если технологическое множество представлено посредством производственной функции, то прибыль определяется как pf(x)-wx, где w - вектор цен на факторы производства, p в данном случае цена выпускаемой продукции. Тогда для любого внутреннего решения (то есть принадлежащего внутренности X) задачи производителя справедливо равенство предельного продукта каждого фактора его относительной цене, то есть в векторной форме f"(x)=w/p.

Если задана функция прибыли \pi(p), являющаяся дважды непрерывно дифференцируемой, выпуклой и положительно однородной (первой степени) функцией, то можно восстановить технологическое множество, как множество, содержащее при любом неотрицательном векторе цен p векторы чистых выпусков z, удовлетворяющих неравенству pz\leqslant \pi(p). Можно также показать, что если функция предложения является положительно однородной нулевой степени и матрица её первых производных непрерывна, симметрична и неотрицательно определена, то соответствующая функция прибыли удовлетворяет вышеуказанным требованиям (верно также и обратное утверждение).

См. также

Напишите отзыв о статье "Технологическое множество"

Литература

Отрывок, характеризующий Технологическое множество

Княгиня, улыбаясь, слушала.
– Ежели еще год Бонапарте останется на престоле Франции, – продолжал виконт начатый разговор, с видом человека не слушающего других, но в деле, лучше всех ему известном, следящего только за ходом своих мыслей, – то дела пойдут слишком далеко. Интригой, насилием, изгнаниями, казнями общество, я разумею хорошее общество, французское, навсегда будет уничтожено, и тогда…
Он пожал плечами и развел руками. Пьер хотел было сказать что то: разговор интересовал его, но Анна Павловна, караулившая его, перебила.
– Император Александр, – сказала она с грустью, сопутствовавшей всегда ее речам об императорской фамилии, – объявил, что он предоставит самим французам выбрать образ правления. И я думаю, нет сомнения, что вся нация, освободившись от узурпатора, бросится в руки законного короля, – сказала Анна Павловна, стараясь быть любезной с эмигрантом и роялистом.
– Это сомнительно, – сказал князь Андрей. – Monsieur le vicomte [Господин виконт] совершенно справедливо полагает, что дела зашли уже слишком далеко. Я думаю, что трудно будет возвратиться к старому.
– Сколько я слышал, – краснея, опять вмешался в разговор Пьер, – почти всё дворянство перешло уже на сторону Бонапарта.
– Это говорят бонапартисты, – сказал виконт, не глядя на Пьера. – Теперь трудно узнать общественное мнение Франции.
– Bonaparte l"a dit, [Это сказал Бонапарт,] – сказал князь Андрей с усмешкой.
(Видно было, что виконт ему не нравился, и что он, хотя и не смотрел на него, против него обращал свои речи.)
– «Je leur ai montre le chemin de la gloire» – сказал он после недолгого молчания, опять повторяя слова Наполеона: – «ils n"en ont pas voulu; je leur ai ouvert mes antichambres, ils se sont precipites en foule»… Je ne sais pas a quel point il a eu le droit de le dire. [Я показал им путь славы: они не хотели; я открыл им мои передние: они бросились толпой… Не знаю, до какой степени имел он право так говорить.]
– Aucun, [Никакого,] – возразил виконт. – После убийства герцога даже самые пристрастные люди перестали видеть в нем героя. Si meme ca a ete un heros pour certaines gens, – сказал виконт, обращаясь к Анне Павловне, – depuis l"assassinat du duc il y a un Marietyr de plus dans le ciel, un heros de moins sur la terre. [Если он и был героем для некоторых людей, то после убиения герцога одним мучеником стало больше на небесах и одним героем меньше на земле.]
Не успели еще Анна Павловна и другие улыбкой оценить этих слов виконта, как Пьер опять ворвался в разговор, и Анна Павловна, хотя и предчувствовавшая, что он скажет что нибудь неприличное, уже не могла остановить его.
– Казнь герцога Энгиенского, – сказал мсье Пьер, – была государственная необходимость; и я именно вижу величие души в том, что Наполеон не побоялся принять на себя одного ответственность в этом поступке.
– Dieul mon Dieu! [Боже! мой Боже!] – страшным шопотом проговорила Анна Павловна.
– Comment, M. Pierre, vous trouvez que l"assassinat est grandeur d"ame, [Как, мсье Пьер, вы видите в убийстве величие души,] – сказала маленькая княгиня, улыбаясь и придвигая к себе работу.
– Ah! Oh! – сказали разные голоса.
– Capital! [Превосходно!] – по английски сказал князь Ипполит и принялся бить себя ладонью по коленке.
Виконт только пожал плечами. Пьер торжественно посмотрел поверх очков на слушателей.
– Я потому так говорю, – продолжал он с отчаянностью, – что Бурбоны бежали от революции, предоставив народ анархии; а один Наполеон умел понять революцию, победить ее, и потому для общего блага он не мог остановиться перед жизнью одного человека.
– Не хотите ли перейти к тому столу? – сказала Анна Павловна.
Но Пьер, не отвечая, продолжал свою речь.
– Нет, – говорил он, все более и более одушевляясь, – Наполеон велик, потому что он стал выше революции, подавил ее злоупотребления, удержав всё хорошее – и равенство граждан, и свободу слова и печати – и только потому приобрел власть.
– Да, ежели бы он, взяв власть, не пользуясь ею для убийства, отдал бы ее законному королю, – сказал виконт, – тогда бы я назвал его великим человеком.
– Он бы не мог этого сделать. Народ отдал ему власть только затем, чтоб он избавил его от Бурбонов, и потому, что народ видел в нем великого человека. Революция была великое дело, – продолжал мсье Пьер, выказывая этим отчаянным и вызывающим вводным предложением свою великую молодость и желание всё полнее высказать.
– Революция и цареубийство великое дело?…После этого… да не хотите ли перейти к тому столу? – повторила Анна Павловна.
– Contrat social, [Общественный договор,] – с кроткой улыбкой сказал виконт.
– Я не говорю про цареубийство. Я говорю про идеи.
– Да, идеи грабежа, убийства и цареубийства, – опять перебил иронический голос.
– Это были крайности, разумеется, но не в них всё значение, а значение в правах человека, в эманципации от предрассудков, в равенстве граждан; и все эти идеи Наполеон удержал во всей их силе.
– Свобода и равенство, – презрительно сказал виконт, как будто решившийся, наконец, серьезно доказать этому юноше всю глупость его речей, – всё громкие слова, которые уже давно компрометировались. Кто же не любит свободы и равенства? Еще Спаситель наш проповедывал свободу и равенство. Разве после революции люди стали счастливее? Напротив. Mы хотели свободы, а Бонапарте уничтожил ее.
Князь Андрей с улыбкой посматривал то на Пьера, то на виконта, то на хозяйку. В первую минуту выходки Пьера Анна Павловна ужаснулась, несмотря на свою привычку к свету; но когда она увидела, что, несмотря на произнесенные Пьером святотатственные речи, виконт не выходил из себя, и когда она убедилась, что замять этих речей уже нельзя, она собралась с силами и, присоединившись к виконту, напала на оратора.
– Mais, mon cher m r Pierre, [Но, мой милый Пьер,] – сказала Анна Павловна, – как же вы объясняете великого человека, который мог казнить герцога, наконец, просто человека, без суда и без вины?
– Я бы спросил, – сказал виконт, – как monsieur объясняет 18 брюмера. Разве это не обман? C"est un escamotage, qui ne ressemble nullement a la maniere d"agir d"un grand homme. [Это шулерство, вовсе не похожее на образ действий великого человека.]
– А пленные в Африке, которых он убил? – сказала маленькая княгиня. – Это ужасно! – И она пожала плечами.
– C"est un roturier, vous aurez beau dire, [Это проходимец, что бы вы ни говорили,] – сказал князь Ипполит.
Мсье Пьер не знал, кому отвечать, оглянул всех и улыбнулся. Улыбка у него была не такая, какая у других людей, сливающаяся с неулыбкой. У него, напротив, когда приходила улыбка, то вдруг, мгновенно исчезало серьезное и даже несколько угрюмое лицо и являлось другое – детское, доброе, даже глуповатое и как бы просящее прощения.
Виконту, который видел его в первый раз, стало ясно, что этот якобинец совсем не так страшен, как его слова. Все замолчали.
– Как вы хотите, чтобы он всем отвечал вдруг? – сказал князь Андрей. – Притом надо в поступках государственного человека различать поступки частного лица, полководца или императора. Мне так кажется.
– Да, да, разумеется, – подхватил Пьер, обрадованный выступавшею ему подмогой.
– Нельзя не сознаться, – продолжал князь Андрей, – Наполеон как человек велик на Аркольском мосту, в госпитале в Яффе, где он чумным подает руку, но… но есть другие поступки, которые трудно оправдать.
Князь Андрей, видимо желавший смягчить неловкость речи Пьера, приподнялся, сбираясь ехать и подавая знак жене.

Вдруг князь Ипполит поднялся и, знаками рук останавливая всех и прося присесть, заговорил:
– Ah! aujourd"hui on m"a raconte une anecdote moscovite, charmante: il faut que je vous en regale. Vous m"excusez, vicomte, il faut que je raconte en russe. Autrement on ne sentira pas le sel de l"histoire. [Сегодня мне рассказали прелестный московский анекдот; надо вас им поподчивать. Извините, виконт, я буду рассказывать по русски, иначе пропадет вся соль анекдота.]
И князь Ипполит начал говорить по русски таким выговором, каким говорят французы, пробывшие с год в России. Все приостановились: так оживленно, настоятельно требовал князь Ипполит внимания к своей истории.
– В Moscou есть одна барыня, une dame. И она очень скупа. Ей нужно было иметь два valets de pied [лакея] за карета. И очень большой ростом. Это было ее вкусу. И она имела une femme de chambre [горничную], еще большой росту. Она сказала…
Тут князь Ипполит задумался, видимо с трудом соображая.
– Она сказала… да, она сказала: «девушка (a la femme de chambre), надень livree [ливрею] и поедем со мной, за карета, faire des visites». [делать визиты.]
Тут князь Ипполит фыркнул и захохотал гораздо прежде своих слушателей, что произвело невыгодное для рассказчика впечатление. Однако многие, и в том числе пожилая дама и Анна Павловна, улыбнулись.
– Она поехала. Незапно сделался сильный ветер. Девушка потеряла шляпа, и длинны волоса расчесались…
Тут он не мог уже более держаться и стал отрывисто смеяться и сквозь этот смех проговорил:
– И весь свет узнал…
Тем анекдот и кончился. Хотя и непонятно было, для чего он его рассказывает и для чего его надо было рассказать непременно по русски, однако Анна Павловна и другие оценили светскую любезность князя Ипполита, так приятно закончившего неприятную и нелюбезную выходку мсье Пьера. Разговор после анекдота рассыпался на мелкие, незначительные толки о будущем и прошедшем бале, спектакле, о том, когда и где кто увидится.

Особенности инфляционных процессов в современной России.

1. Понятие производства и ПФ. Производственное множество.

2. Задача максимизации прибыли

3. Равновесие производителя. Технический прогресс

4. Задача минимизации издержек.

5. Агрегирование в теории производства. Равновесие фирмы и отрасли в д/ср периоде

(самостоятельно) предложение конкурентных фирм, имеющих альтернативные цели

Производство – деятельность направленная на изготовление максимального количества материальных благ, зависит от количества используемых факторов производства, заданных технологическим аспектом производства.

Любой технологический процесс можно представить с помощью вектора чистых выпусков, который будем обозначать через y. Если согласно данной технологии фирма производит i-тый продукт, то i-тая координата вектора y будет положительна. Если же напротив, i-тый продукт затрачивается, то эта координата будет отрицательна. Если некоторый продукт не затрачивается и не выпускается согласно данной технологии, то соответствующая координата будет равна 0.

Множество всех технологически доступных для данной фирмы векторов чистых выпусков будем называть производственным множеством фирмы и обозначать Y.

Свойства производственных множеств:

1. Производственное множество не пусто, т.е. фирме доступен хотя бы один технологический процесс.

2.Производственное множество замкнуто.

3. Отсутствие «рога изобилия»: если y 0 и y ∊Y, то y=0. Нельзя произвести что-то не затратив ничего (нет y<0, т.е. ресурсов).

4. Возможность бездействия (ликвидации): 0∊Y. в реальности могут существовать невозвратные издержки.

5. Свобода расходования: y∊Y и y` y, то y`∊Y. Производственному множеству принадлежат не только оптимальные, но и технологии с меньшими выпусками/затратами ресурсов.

6. необратимость. Если y∊Y и y 0, то –y Y. Если из 2 единиц первого блага можно произвести 1 второго, то обратный процесс не возможен.

7. Выпуклость: если y`∊Y, то αy + (1-α)y` ∊ Y для всех α∊. Строгая выпуклость: для всех α∊(0,1). Свойство 7 позволяет комбинируя технологии, получить другие доступные технологии.

8. Отдача от масштаба:

Если в процентном соотношении объем использованных факторов изменился на ∆ N , а соответствующее изменение выпуска составило ∆Q , то имеют место следующие ситуации:

- ∆ N = ∆Q имеет место пропорциональная отдача (рост количества факторов повлек соответствующий рост выпуска)

- ∆ N < ∆Q имеет место возрастающая отдача (положительный эффект масштаба) – т.е. выпуск увеличился в большей пропорции, чем увеличилось количество затраченных факторов


- ∆ N > ∆Q имеет место убывающая отдача (отрицательный эффект масштаба) – т.е. увеличение затрат приводит к меньшему в процентном выражении росту выпуска

Эффект масштаба актуален в долгосрочном периоде. Если увеличение масштаба производства не приводит к изменению производительности труда, мы имеем дело с неизменной отдачей от масштаба. Убывающая отдача от масштаба сопровождается снижением производительности труда, возрастающая -ее повышением.

В случае, если множество товаров, которые производятся, отлично от множества ресурсов, которые используются, и производиться только один товар, то производственное множество может быть описано с помощью производственной функции.

Производственная функция (ПФ) – отражает зависимость между максимальным выпуском и определенным сочетании факторов (труда и капитала) и при данном уровне технологического развития общества.

Q=f(f1,f2,f3,…fn)

где Q - выпуск фирмы за определенный промежуток времени;

fi - количество i-го ресурса, использованного в производстве продукции;

Как правило, выделяют три фактора производства: труд, капитал и материалы. Мы ограничимся анализом двух факторов: труда (L) и капитала (К), тогда производственная функция принимает вид: Q =f(K, L).

Виды ПФ могут различаться в зависимости от характера технологии, и могут быть представлены в трех видах:

Линейная ПФ вида y = ax1 + bx2 – характеризуется постоянной отдачей от масштаба.

ПФ Леонтьева – в которой ресурсы дополняют друг друга, их комбинация определяется технологией и факторы производства являются не взаимозаменяемыми.

ПФ Кобба-Дугласа – функция, в которой используемые факторы производства обладают свойством взаимозаменяемости. Общий вид функции:

Где А - технологический коэффициент, α - коэффициент эластичности по труду, а β - коэффициент эластичности по капиталу.

Если сумма показателей степени (α + β) равна единице, то функция Кобба-Дугласа является линейно однородной, то есть она демонстрирует постоянную отдачу при изменении масштабов производства.

Впервые производственная функция была рассчитана в 1920-е годы для обрабатывающей промышленности США, в виде равенства

Для ПФ Кобба-Дугласа справедливо:

1. Поскольку а < 1 и b < 1, предельный продукт каждого фактора меньше среднего продукта (МРК < АРК и MPL < APL).

2. Поскольку вторые производные производственной функции по труду и по капиталу отрицательны, можно утверждать, что данная функция характеризуется убывающим предельным продуктом как труда, так и капитала.

3. При снижении величины MRTSL K постепенно убывает. Это означает, что изокванты производственной функции имеют стандартную форму: это - гладкие изокванты с отрицательным наклоном, выпуклые к началу координат.

4. Для данной функции характерна постоянная (равная 1) эластичность замещения.

5. Функция Кобба-Дугласа может характеризовать любой тип отдачи от масштаба, в зависимости от значений параметров а и Ь

6. Рассматриваемая функция может служить для описания различных типов технического прогресса.

7 Степенными параметрами функции являются коэффициенты эластичности выпуска по капиталу (а) и по труду (Ь), так что уравнение для темпа роста выпуска (8.20) для функции Кобба-Дугласа принимает вид GQ = Gz + aGK + bGL. Параметр а, таким образом, характеризует как бы «вклад» капитала в увеличение выпуска, а параметр b - «вклад» труда.

ПФ основана на ряде «особенностей производства». Они касаются эффекта выпуска в трех случаях: (1) пропорциональное увеличение всех затрат, (2) изменение структура затрат при постоянном выпуске, (3) увеличение одного фактора производства при остальных неизменных. случай (3) относиться к краткосрочному периоду.

Производственная функция с одним переменным фактором имеет вид:

Мы видим, что наиболее эффективное изменение переменного фактора X наблюдается на отрезке от точки А до точки Б. Здесь предельный продукт (МР), достигнув своего максимального значения, начинает уменьшаться, средний продукт (АР) еще увеличивается, общий продукт (ТР) получает наибольший прирост.

Закон убывающей отдачи (закон убывающего предельного продукта) – определяет ситуацию, при которой достижение определенных объемов производства приводит к уменьшению выхода готовой продукции на дополнительно введенную единицу ресурса.

Как правило, данный объем может быть произведен посредством различных способов производства. Это связано с тем, что факторы производства в определенной степени взаимозаменяемы. Можно провести изокванты, соответствующие всем способам производства, необходимым для выпуска в данном объеме. В результате мы получаем карту изоквант, которая характеризует зависимость между всеми возможными комбинациями ресурсов и размерами выпуска и, следовательно, является графической иллюстрацией производственной функции.

Изокванта (линия равного выпуска - isoquant)– кривая, отражающая все комбинации факторов производства, обеспечивающих одинаковый выпуск продукции.

Совокупность изоквант, каждая из которых показывает максимальный выпуск продукции, достигаемый при использовании определенных сочетаний ресурсов, называется картой изоквант (isoquant map). Чем дальше расположена изокванта от начала координат, тем больше ресурсов задействовано в расположенных на ней способах производства и тем больше размеры выпуска, которые характеризуются данной изоквантой (Q3> Q2> Q1).

Изокванта и ее форма отражает зависимость, заданную ПФ. В долгосрочном периоде существует определенная взаимная дополняемость (комплектарность) факторов производства, однако без уменьшения объема выпуска вероятна и определенная взаимозаменяемость данных факторов производства. Так, для выпуска блага могут быть использованы различные комбинации ресурсов; можно произвести это благо при использовании меньшего объема капитала и большего объема затрат труда, и наоборот. В первом случае производство считается технически эффективным в сравнении со вторым случаем. Однако существует предел того, насколько труд может быть заменен большим объемом капитала, чтобы не сократилось производство. С другой стороны, имеется предел применения ручного труда без использования машин. Мы будем рассмотривать изокванту в зоне технического замещения.

Уровень взаимозаменяемости факторов отражает показатель предельной нормы технического замещения . – пропорция, в которой один фактор может быть заменен на другой при сохранении прежнего объема выпуска; отражает наклон изокванты.

MRTS = - ∆K / ∆ L = МР L / МР K

Чтобы при изменении количества используемых факторов производства выпуск оставался неизменным, количества труда и капитала должны изменяться в разных направлениях. Если количество капитала сокращается (АК< 0), то количество труда должно увеличиваться (AL > 0). Между тем предельная норма технического замещения представляет собой просто пропорцию, в которой один фактор производства может быть замещен другим, и, как таковая, есть величина всегда положительная.

2. Производственные множества и производственные функции

2.1. Производственные множества и их свойства

Рассмотрим важнейшего участника экономических процессов – отдельного производителя. Производитель реализует свои цели только через потребителя и поэтому должен угадать, понять, что тот хочет, и удовлетворить его потребности. Будем считать, что имеется n различных товаров, количество n-го товара обозначается х n , тогда некоторый набор товаров обозначается Х = (x 1 , …, x n). Будем рассматривать только неотрицательные количества товаров, так что х i  0 для любого i = 1, ..., n или Х > 0. Множество всех наборов товаров называется пространством товаров С. Набор товаров можно трактовать как корзину, в которой лежат эти товары в соответствующем количестве.

Пусть экономика работает в пространстве товаров С = {X = (x 1 , x 2 , …, x n): x 1 , …, x n  0}. Пространство товаров состоит из неотрицательных n-мерных векторов. Рассмотрим теперь вектор T размерности n, первые m компонентов которого неположительные: x 1 , …, x m  0, а последние (n-m) компонентов неотрицательны: x m +1 , …, x n  0. Вектор X = (x 1 ,…, x m) назовем вектором затрат , а вектор Y = (x m+1 , …, x n) – вектором выпуска . Сам же вектор T = (X,Y) назовем вектором затрат-выпуска, или технологией .

По своему смыслу технология (X,Y) есть способ переработки ресурсов в готовую продукцию: «смешав» ресурсы в количестве X, получим продукцию в размере Y. Каждый конкретный производитель характеризуется некоторым множеством τ технологий, которое называется производственным множеством . Типичное заштрихованное множество представлено на рис. 2.1. Данный производитель затрачивает один товар для выпуска другого.

Рис. 2.1. Производственное множество

Производственное множество отражает широту возможностей производителя: чем оно больше, тем шире его возможности. Производственное множество должно удовлетворять следующим условиям:

    оно замкнуто – это означает, что если вектор Т затрат-выпуска сколь угодно точно приближается векторами из τ, то и Т принадлежит τ (если все точки вектора Т лежат в τ, то Тτ см. рис. 2.1 точки С и В);

    в τ(-τ) = {0}, т. е. если Tτ, T ≠ 0, то -Тτ – нельзя поменять местами затраты и выпуск, т. е. производство – необратимый процесс (множество – τ находится в четвертом квадранте, где у 0);

    множество выпукло, это предположение ведет к уменьшению отдачи от перерабатываемых ресурсов с ростом объемов производства (к увеличению норм расхода затрат на готовую продукцию). Так, из рис. 2.1 ясно, что y/x  убывает при х  -. В частности, предположение о выпуклости ведет к уменьшению производительности труда с ростом объема производства.

Часто выпуклости просто бывает недостаточно, и тогда требуют строгой выпуклости производственного множества (или некоторой его части).

2.2. “Кривая” производственных возможностей

и вмененные издержки

Рассматриваемое понятие производственного множества отличается высокой степенью абстрактности и в силу чрезвычайной общности малопригодно для экономической теории.

Рассмотрим, например рис. 2.1. Начнем с точек В и С. Затраты по этим технологиям одинаковы, а выпуск разный. Производитель, если он не лишен здравого смысла, никогда не выберет технологию В, раз есть более лучшая технология С. В данном случае (см. рис. 2.1), найдем для каждого x  0 самую высокую точку (x, y) в производственном множестве. Очевидно, при затратах х технология (x, y) самая лучшая. Никакая технология (x, b) c b производственной функцией. Точное определение производственной функции:

Y = f(x)(x, y) τ, и если (x, b)  τ и b  y, то b = x.

Из рис. 2.1 видно, что для всякого x  0 такая точка y = f(x) единственна, что, собственно, и позволяет говорить о производственной функции. Но так просто дело обстоит, если выпускается только один товар. В общем случае для вектора затрат Х обозначим множество М х = {Y:(X,Y)τ}. Множество М х – это множество всех возможных выпусков при затратах Х. В этом множестве рассмотрим “кривую” производственных возможностей K x = {YМ х: если ZМ х и Z  Y, то Z = X}, т. е. K x – это множество лучших выпусков, лучше которых нет . Если выпускаются два товара, то это кривая, если же выпускается более двух товаров, то это поверхность, тело или множество еще большей размерности.

Итак, для любого вектора затрат Х все наилучшие выпуски лежат на кривой (поверхности) производственных возможностей. Поэтому из экономических соображений оттуда и должен выбрать производитель технологию. Для случая выпуска двух товаров y 1 , y 2 картина показана на рис. 2.2.

Если оперировать только натуральными показателями (тоннами, метрами и т. д.), то для данного вектора затрат Х мы лишь должны выбрать вектор выпуска Y на кривой производственных возможностей, но какой конкретно выпуск надо выбрать, решить еще нельзя. Если само производственное множество τ выпукло, то и М х выпукло для любого вектора затрат Х. В дальнейшем нам понадобится строгая выпуклость множества М х. В случае выпуска двух товаров это означает, что касательная к кривой производственных возможностей K x имеет с этой кривой только одну общую точку.

Рис. 2.2. Кривая производственных возможностей

Рассмотрим теперь вопрос о так называемых вмененных издержках . Предположим, что выпуск фиксирован в точке A(y 1 , y 2), см. рис. 2.2. Теперь возникла необходимость увеличить выпуск 2-го товара на y 2 , используя, конечно, прежний набор затрат. Сделать это можно, как видно из рис. 2.2, перенеся технологию в точку В, для чего с увеличением выпуска второго товара на y 2 придется уменьшить выпуск первого товара на y 1 .

Вмененными издержками первого товара по отношению ко второму в точке А называется
. Если кривая производственных возможностей задана неявным уравнением F(y 1 ,y 2) = 0, то δ 1 2 (A) = (F/y 2)/(F/y 1), где частные производные взяты в точке А. Если внимательно вглядеться в рассматриваемый рисунок, то можно обнаружить любопытную закономерность: при движении слева вниз по кривой производственных возможностей вмененные издержки уменьшаются от очень больших величин до очень малых.

2.3. Производственные функции и их свойства

Производственной функцией называется аналитическое соотношение, связывающее переменные величины затрат (факторов, ресурсов) с величиной выпуска продукции. Исторически одними из первых работ по построению и использованию производственных функций были работы по анализу сельскохозяйственного производства в США. В 1909 г. Митчерлих предложил нелинейную производственную функцию: удобрения – урожайность. Независимо от него Спиллман предложил показательное уравнение урожайности. На их основе был построен ряд других агротехнических производственных функций.

Производственные функции предназначены для моделирования процесса производства некоторой хозяйственной единицы: отдельной фирмы, отрасли или всей экономики государства в целом. С помощью производственных функций решаются задачи:

    оценки отдачи ресурсов в производственном процессе;

    прогнозирования экономического роста;

    разработки вариантов плана развития производства;

    оптимизации функционирования хозяйственной единицы при условии заданного критерия и ограничений по ресурсам.

Общий вид производственной функции: Y = Y(X 1 , X 2 , …, X i , …, X n), где Y – показатель, характеризующий результаты производства; X – факторный показатель i-го производственного ресурса; n – количество факторных показателей.

Производственные функции определяются двумя группами предположений: математических и экономических. Математически предполагается, что производственная функция должна быть непрерывной и дважды дифференцируемой. Экономические предположения состоят в следующем: при отсутствии хотя бы одного производственного ресурса производство невозможно, т. е. Y(0, X 2 , …, X i , …, X n) =

Y(X 1 , 0, …, X i , …, X n) = …

Y(X 1 , X 2 , …, 0, …, X n) = …

Y(X 1 , X 2 , …, X i , …, 0) = 0.

Однако, только с помощью натуральных показателей определить для данных затрат Х единственный выпуск Y удовлетворительно не удается: наш выбор сузился лишь до «кривой» производственных возможностей K x . В силу этих причин разработана лишь теория производственных функций производителей, выпуск которых можно охарактеризовать одной величиной – либо объемом выпуска, если выпускается один товар, либо суммарной стоимостью всего выпуска.

Пространство затрат m-мерно. Каждой точке пространства затрат Х = (х 1 , …, х m) соответствует единственный максимальный выпуск (см. рис. 2.1), произведенный при использовании этих затрат. Эта связь и называется производственной функцией. Однако обычно производственную функцию понимают не столь ограничительно и всякую функциональную связь между затратами и выпуском считают производственной функцией. В дальнейшем будем считать, что производственная функция имеет необходимые производные. Предполагается, что производственная функция f(X) удовлетворяет двум аксиомам. Первая из них утверждает, что существует подмножество пространства затрат, называемое экономической областью Е, в которой увеличение любого вида затрат не приводит к уменьшению выпуска. Таким образом, если X 1 , X 2 – две точки этой области, то X 1  X 2 влечет f(X 1)  f(X 2). В дифференциальной форме это выражается в том, что в этой области все первые частные производные функции неотрицательны: f/x 1 ≥ 0 (у любой возрастающей функции производная больше нуля). Эти производные называются предельными продуктами , а вектор f/X = (f/x 1 , …, f/x m) – вектором предельных продуктов (показывает во сколько раз изменится выпуск продукции при изменении затрат).

Вторая аксиома утверждает, что существует выпуклое подмножество S экономической области, для которой подмножества {XS:f(X)  a} выпуклы для всех а  0. В этом подмножестве S матрица Гёссе, составленная из вторых производных функции f(X), отрицательно определена, следовательно,  2 f/x 2 i

Остановимся на экономическом содержании этих аксиом. Первая аксиома утверждает, что производственная функция не какая-то совершенно абстрактная функция, придуманная теоретиком-математиком. Она, пусть и не на всей своей области определения, а только лишь на ее части, отражает экономически важное, бесспорное и в то же время тривиальное утверждение: в разумной экономике увеличение затрат не может привести к уменьшению выпуска. Из второй аксиомы поясним только экономический смысл требования, чтобы производная  2 f/x 2 i была меньше нуля для каждого вида затрат. Это свойство называется в экономике за коном убывающей отдачи или убывающей доходности : по мере увеличения затрат, начиная с некоторого момента (при входе в область S!), на чинает уменьшаться предельный продукт. Классическим примером этого закона является добавление все большего и большего количества труда в производство зерна на фиксированном участке земли. В дальнейшем подразумевается, что производственная функция рассматривается на области S, в которой обе аксиомы справедливы.

Составить производственную функцию данного предприятия можно, даже ничего не зная о нем. Надо только поставить у ворот предприятия счетчик (человека или какое-то автоматическое устройство), который будет фиксировать Х – ввозимые ресурсы и Y – количество продукции, которую предприятие произвело. Если накопить достаточно много такой статической информации, учесть работу предприятия в различных режимах, то потом можно прогнозировать выпуск продукции, зная только объем ввезенных ресурсов, а это и есть знание производственной функции.

2.4. Производственная функция Кобба-Дугласа

Рассмотрим одну из наиболее распространенных производственных функций – функцию Кобба-Дугласа: Y = AK  L  , где A, ,  > 0 – константы,  + 

Y/K = AαK α -1 L β > 0, Y/L = AβK α L β -1 > 0.

Отрицательность вторых частных производных, т. е. убывание предельных продуктов: Y 2 /K 2 = Aα(α–1)K α -2 L β 0.

Перейдем к основным экономико-математическим характеристикам производственной функции Кобба-Дугласа. Средняя производительность труда определяется как y = Y/L – отношение объема произведенного продукта к количеству затраченного труда ; средняя фондоотдача k = Y/K – отношение объема произведенного продукта к величине фондов .

Для функции Кобба-Дугласа средняя производительность труда y = AK  L  , и в силу условия  с увеличением затрат труда средняя производительность труда падает. Этот вывод допускает естественное объяснение – поскольку величина второго фактора К остается неизменной, то, значит, вновь привлекаемая рабочая сила не обеспечивается дополнительными средствами производства, что и приводит к снижению производительности труда (это справедливо и в самом общем случае – на уровне производственных множеств).

Предельная производительность труда Y/L = AβK α L β -1 > 0, откуда видно, что для функции Кобба-Дугласа предельная производительность труда пропорциональна средней производительности и меньше ее. Аналогично определяются средняя и предельная фондоотдачи. Для них также справедливо указанное соотношение – предельная фондоотдача пропорциональна средней фондоотдаче и меньше ее.

Важное значение имеет такая характеристика, как фондовооруженность f = K/L, показывающая объем фондов, приходящийся на одного работника (на одну единицу труда) .

Найдем теперь эластичность продукции по труду:

(Y/L):(Y/L) = (Y/L)L/Y = AβK α L β -1 L/(AK α L β) = β.

Таким образом, ясен смысл параметра – это эластичность (отношение предельной производительности труда к средней производительности труда) продукции по труду . Эластичность продукции по труду означает, что для увеличения выпуска продукции на 1 % необходимо увеличить объем трудовых ресурсов на  %. Аналогичный смысл имеет параметр  – это эластичность продукции по фондам .

И еще одно значение представляется интересным. Пусть  +  = 1. Легко проверить, что Y = (Y/K)/K + (Y/L)L (подставляя уже вычисленные ранее Y/K, Y/L в эту формулу). Будем считать, что общество состоит только из рабочих и предпринимателей. Тогда доход Y распадается на две части – доход рабочих и доход предпринимателей. Поскольку при оптимальном размере фирмы величина Y/L – предельный продукт по труду – совпадает с заработной платой (это можно доказать), то (Y/L)L представляет собой доход рабочих. Аналогично величина Y/K есть предельная фондоотдача, экономический смысл которой есть норма прибыли, следовательно, (Y/K)K представляет доход предпринимателей.

Функция Кобба-Дугласа – наиболее известная среди всех производственных функций. На практике при ее построении иногда отказываются от некоторых требований (например, сумма  +  может быть больше 1 и т. п.).

Пример 1. Пусть производственная функция есть функция Кобба-Дугласа. Чтобы увеличить выпуск продукции на а = 3 %, надо увеличить основные фонды на b = 6 % или численность работников на c = 9 %. В настоящее время один работник за месяц производит продукции на М = 10 4 руб. , а всего работников L = 1000. Основные фонды оцениваются в K = 10 8 руб. Найти производственную функцию.

Решение. Найдем коэффициенты , :  = а/b = 3/6 = 1/2,  = а/с = = 3/9 = 1/3, следовательно, Y = AK 1/2 L 1/3 . Для нахождения А подставим в эту формулу значения K, L, M, имея в виду, что Y = ML = 1000 . 10 4 = 10 7 – – 10 7 = А(10 8) 1/2 1000 1/3 . Отсюда А = 100. Таким образом, производственная функция имеет вид: Y = 100K 1/2 L 1/3 .

2.5. Теория фирмы

В предыдущем разделе мы, анализируя, моделируя поведение производителя, использовали только натуральные показатели и обошлись без цен, однако не смогли окончательно решить задачу производителя, т. е. указать единственный способ действий для него в сложившихся условиях. Теперь введем в рассмотрение цены. Пусть Р – вектор цен. Если Т = (X,Y) – технология, т. е. вектор «затраты-выпуск», X – затраты, Y – выпуск, то скалярное произведение PT = PX + PY есть прибыль от использования технологии Т (затраты – отрицательные количества). Теперь сформулируем математическую формализацию аксиомы, описывающей поведение производителя.

Задача производителя: производитель выбирает технологию из своего производственного множества, стремясь максимизировать прибыль. Итак, производитель решает следующую задачу: РТ→max, Tτ. Эта аксиома резко упрощает ситуацию выбора. Так, если цены положительны, что естественно, то компонента «выпуск» решения этой задачи автоматически будет лежать на кривой производственных возможностей. Действительно, пусть T = (X,Y) – какое-нибудь решение задачи производителя. Тогда существует ZK x , Z  Y, следовательно, P(X, Z)  P(X, Y), значит, точка (X, Z) также есть решение задачи производителя.

Для случая двух видов продуктов задачу можно решить графически (рис. 2.3). Для этого надо «двигать» прямую линию, перпендикулярную вектору Р, в направлении, куда он показывает; тогда последняя точка, когда эта прямая линия еще пересекает производственное множество, и будет решением (на рис. 2.3. это точка Т). Как легко видеть, строгая выпуклость нужной части производственного множества во втором квадранте гарантирует единственность решения. Такие же рассуждения действуют и в общем случае, для большего числа видов затрат и выпуска. Однако мы не пойдем по этому пути, а используем аппарат производственных функций и производителя назовем фирмой. Итак, выпуск фирмы можно охарактеризовать одной величиной – либо объемом выпуска, если выпускается один товар, либо суммарной стоимостью всего выпуска. Пространство затрат m-мерно, вектор затрат Х = (х 1 , …, х m). Затраты однозначно определяют выпуск Y, а эта связь и есть производственная функция Y = f(X).

Рис. 2.3. Решение задачи производителя

В данной ситуации обозначим через Р вектор цен на товары-затраты и пусть v – цена единицы выпускаемого товара. Следовательно, прибыль W, являющаяся в итоге функцией Х (и цен, но они считаются постоянными), есть W(X) = vf(X) – PX→max, X  0. Приравнивая частные производные функции W к нулю, получим:

v(f/x j) = p j для j = 1, …, m или v(f/X) = P (2.1)

Будем предполагать, что все затраты строго положительны (нулевые можно просто исключить из рассмотрения). Тогда точка, даваемая соотношением (2.1), оказывается внутренней, т. е. точкой экстремума. И поскольку еще предполагается отрицательная определенность матрицы Гёссе производственной функции f(Х) (исходя из требований к производственным функциям), то это точка максимума.

Итак, при естественных предположениях на производственные функции (эти предположения выполняются для производителя со здравым смыслом и в разумной экономике) соотношение (2.1) дает решение задачи фирмы, т. е. определяет объем Х * перерабатываемых ресурсов, в результате чего получается выпуск Y * = f(Х *) Точку Х * , или (Х * ,f(Х *)) назовем оптимальным решением фирмы. Остановимся на экономическом смысле соотношения (2.1). Как говорилось, (f/X) = (f/x 1 ,…,f/x m) называется предельным вектором-продуктом, или вектором предельных продуктов , а f/x i называется i-м предельным продуктом , или откликом выпуска на изменение i-го товара затрат . Следовательно, vf/x i dx i – это стоимость i-го предельного продукта, дополнительно полученного из dx i единиц i-го ресурса . Однако стоимость dx i единиц i-го ресурса равна р i dx i , т. е. получилось равновесие: можно вовлечь в производство дополнительно dx i единиц i-го ресурса, потратив на его закупку р i dx i , но выигрыша не будет, т. к. получим после переработки продукции ровно на такую же сумму, сколько затратили. Соответственно, оптимальная точка, даваемая соотношением (2.1), является точкой равновесия – уже невозможно выжать из товаров-ресурсов больше, чем затрачено на их покупку.

Очевидно, наращивание выпуска фирмы происходило постепенно: сначала стоимость предельных продуктов была меньше покупной цены потребных для их производства товаров-ресурсов. Наращивание объемов производства идет до тех пор, пока не начнет выполняться соотношение (2.1): равенство стоимости предельных продуктов и покупной цены, потребных для их производства товаров-ресурсов.

Предположим, что в задаче фирмы W(X) = vf(X) – PX → max, X  0, решение Х * единственное для v > 0 и Р > 0. Таким образом, получается вектор-функция X * = X * (v, P), или функции x * I = x * i (v, p 1 , p m) для i = 1, …, m. Эти m функций называются функциями спроса на ресурсы при данных ценах на продукцию и ресурсы. Содержательно эти функции означают, что, если сложились цены Р на ресурсы и цена v на выпускаемый товар, данный производитель (характеризующийся данной производственной функцией) определяет объем перерабатываемых ресурсов по функциям x * I = x * i (v, p 1 , p m) и спрашивает эти объемы на рынке. Зная объемы перерабатываемых ресурсов и подставляя их в производственную функцию, получим выпуск как функцию цен; обозначим эту функцию через q * = q * (v,P) = f(X(v,P)) = Y * . Она называется функцией предложения продукции в зависимости от цены v на продукцию и цен Р на ресурсы.

По определению, ресурс i-го вида называется малоценным , если и только если, x * i /v т. е. при повышении цены на продукцию спрос на малоценный ресурс уменьшается. Удается доказать важное соотношение: q * /P = -X * /v или q * /p i = -x * i /v, для i = 1, …, m. Следовательно, возрастание цены продукции приводит к повышению (понижению) спроса на определенный вид ресурсов, если и только если увеличении платы за этот ресурс приводит к сокращению (возрастанию) оптимального выпуска. Отсюда видно основное свойство малоценных ресурсов: увеличение платы за них ведет к увеличению выпуска продукции! Однако можно строго доказать наличие таких ресурсов, возрастание платы за которые приводит к уменьшению выпуска продукции (т.е. все ресурсы не могут быть малоценными) .

Удается доказать также, что x * i /p i взаимодополняемыми, если x * i /p j взаимозаменяемыми, если x * i /p j > 0. То есть, для взаимодополняемых ресурсов повышение цены на один из них приводит к падению спроса на другой, а для взаимозаменяемых ресурсов повышение цены на один из них приводит к увеличению спроса на другой. Примеры взаимодополняемых ресурсов: компьютер и его составляющие, мебель и дерево, шампунь и кондиционер к нему. Примеры взаимозаменяемых ресурсов: сахар и заменители сахара (например, сорбит), арбузы и дыни, майонез и сметана, масло и маргарин и т. д.

Пример 2. Для фирмы с производственной функцией Y = 100K 1/2 L 1/3 (из примера 1) найти оптимальный размер, если период амортизации основных фондов N=12 месяцев, зарплата работника в месяц а = 1000 руб.

Решение. Оптимальный размер выпуска или объема производства находится из соотношения (2.1). В данном случае выпуск продукции измеряется в денежном выражении, так что v = 1. Стоимость месячного содержания одного рубля фондов 1/N, т. е. получаем систему уравнений

, решая которую находим ответ:
, L = 8 . 10 3 , K = 144 . 10 6 .

2.6. Задачи

1. Пусть производственная функция есть функция Кобба-Дугласа. Чтобы увеличить выпуск продукции на 1 %, надо увеличить основные фонды на b = 4 % или численность работников на c = 3 %. В настоящее время один работник за месяц производит продукции на М = 10 5 руб. , а всего работников L = 10 4 . Основные фонды оцениваются в K = 10 6 руб. Найдите производственную функцию, среднюю фондоотдачу, среднюю производительность труда, фондовооруженность.

2. Группа «челноков» в количестве Е решила объединиться с N продавцами. Прибыль от дня работы (выручка минус расходы, но не зарплата) выражается формулой Y = 600(EN) 1/3 . Зарплата «челнока» 120 руб. в день, продавца – 80 руб. в день. Найдите оптимальный состав группы из «челноков» и продавцов, т. е. сколько должно быть «челноков» и сколько продавцов.

3. Бизнесмен решил основать небольшое автотранспортное предприятие. Ознакомившись со статистикой, он увидел, что примерная зависимость ежедневной выручки от числа автомашин А и числа N выражается формулой Y = 900А 1/2 N 1/4 . Амортизационные и другие ежедневные расходы на одну машину равны 400 руб., ежедневная зарплата рабочего 100 руб. Найдите оптимальную численность рабочих и автомашин.

4. Бизнесмен задумал открыть пивной бар. Предположим, что зависимость выручки Y (за вычетом стоимости пива и закусок) от числа столиков М и числа официантов F выражается формулой Y = 200М 2/3 F 1/4 . Расходы на один столик составляют 50 руб., зарплата официанта – 100 руб. Найдите оптимальный размер бара, т. е. число официантов и столиков.

Продолжим изучение моделей сбалансированного роста экономики на более общем уровне и перейдем к близким к ним моделям экономического благосостояния. Последние, как и модели роста, относятся к нормативным моделям.

Говоря об экономике благосостояния, имеют в виду такое ее развитие, когда все потребители равномерно достигают максимума своей полезности. Однако на практике такая идеальная ситуация имеет место довольно редко, так как благосостояние одних достигается часто за счет ухудшения состояния других. Поэтому более реально говорить о таком уровне распределения благ, когда ни один потребитель не может увеличить свое благосостояние, не ущемляя при этом интересов других потребителей.

Если вдоль траектории равновесного роста ни один потребитель, как и ни один производитель, не может приобрести больше без дополнительных затрат (отсутствие прибыли в состоянии равновесия), то при развитии экономики по траектории такого «благосостояния» ни один потребитель не может стать богаче, не обедняя при этом другого.

Из предыдущего раздела следует, что учет временных факторов в математических моделях экономики помогает обнаружить вполне логичную связь экономических процессов с естественным ростом производственных и потребительских возможностей. В условиях линейных моделей при некоторых предположениях темп такого роста равен проценту капитала и соответствующий процесс расширения экономики характеризуется сбалансированным ростом интенсивностей выпуска всех продуктов и сбалансированным снижением их цен. В этом разделе сформулируем общую динамическую модель производства, охватывающую ранее рассмотренные линейные модели, как частные случаи, и изучим в ней вопросы сбалансированного роста.

Общность рассматриваемой здесь модели заключается в том, что производственный процесс описывается не посредством производственной функции вообще, и линейной производственной функции (как в моделях Леонтьева и Неймана) в частности, а с помощью так называемого технологического множества .

Технологическое множество (обозначим его символом ) - это множество таких преобразований экономики, когда производство продукции при затратах технологически возможно в том и только в том случае, когда . Пара называется производственным процессом , поэтому множество представляет собой множество всех производственных процессов, возможных при данной технологии. Например, в модели Леонтьева технологическое множество j -ой отрасли имеет вид где - валовый выпуск j -го товара, а - j -ый столбец технологической матрицы A . Поэтому технологическое множество в модели Леонтьева в целом есть а в модели Неймана -

В производственном процессе , вообще говоря, могут содержаться такие продукты, которые одновременно и затрачиваются, и выпускаются (например, горюче-смазочные материалы, мука, мясо и т.д.). В экономико-математических моделях для большей общности часто допускается, что каждый продукт из может и затрачиваться, и выпускаться (например, в моделях Леонтьева и Неймана). В этом случае векторы x и y имеют одинаковую размерность, и их соответствующие компоненты обозначают одни и те же продукты.

Пусть - затрачиваемый объем i -го продукта, а - его выпускаемый объем. Тогда разность называется чистым выпуском в процессе . Поэтому вместо производственного процесса часто рассматривают вектор чистого выпуска, характеризуя эту разность как поток (или интенсивность), т.е. величину чистого выпуска в единицу времени. При этом технологическое множество понимается как множество всевозможных чистых выпусков. а вектор называется процессом с потоком .

Перечислим некоторые свойства технологического множества, которые являются отражением фундаментальных законов производства.

Разные производственные процессы в можно сравнивать как по эффективности, так и по прибыльности.

Говорят, что процесс более эффективен, чем процесс , если , . Процесс называется эффективным , если в не содержатся более эффективные процессы, чем .

Пусть - вектор цен. Говорят, что процесс более прибыльный , чем процесс , если величина не меньше, чем величина .

Эти два варианта натуральной и стоимостной оценки процессов оказываются фактически эквивалентными.

Теорема 6.1. Пусть - технологическое множество. Тогда a) если при векторе цен процесс максимизирует прибыль на множестве , то является эффективным процессом; b) если выпукло и - эффективный в процесс, то существует такой вектор цен , что прибыль достигает максимума при

Определим структуру технологического множества для тех моделей, которые учитывают фактор времени. Рассмотрим период планирования с дискретными точками Пусть в год (т.е. в начале планового периода ) экономика характеризуется запасом товаров В этом случае говорят, что экономика находится в состоянии . К концу периода экономика достигает другого состояния , которое предопределено предыдущим состоянием. В этом случае говорят, что реализован производственный процесс где - заданное технологическое множество. Здесь вектор рассматривается как затраты, осуществляемые в начале периода , а - как соответствующий этим затратам выпуск, производимый с временным лагом в один год. На следующих этапах производства имеем и т.д. Таким путем осуществляется динамика развития экономики . Подобное движение экономики является самоподдерживающимся, так как продукты в системе воспроизводятся без какого-либо притока извне.

Конечная последовательность векторов называется допустимой траекторией экономики (описываемой технологическим множеством Z ) на интервале времени , если каждая пара двух ее последовательно идущих членов принадлежит множеству Z , т.е.

Обозначим через множество всех допустимых траекторий на интервале соответствующих начальному состоянию

Пусть Траектория называется более эффективной, чем , если Траектория называется эффективной траекторией , если в не содержится более эффективной траектории, чем . Траектория называется более прибыльной , чем , если

Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.

Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"

Подобные документы

    Сущность издержек производства, их классификация. Основные направления снижения издержек производства. Экономическая сущность и функции прибыли. Операционные и внереализационны расходы. Изучение взаимосвязи издержек производства и прибыли предприятия.

    курсовая работа , добавлен 24.05.2014

    Предмет и функции экономтеории. Товар и его свойства. Принципы предельной полезности. Теория денег К. Маркса. Понятие ликвидности, издержек и дохода фирмы. Виды и характерные черты конкуренции. Модель совокупного спроса и предложения. Налоги, их функции.

    шпаргалка , добавлен 11.01.2011

    Предмет экономической теории, структура и функции. Экономические законы и их классификация. Трудовая теория стоимости. Товар и его свойства. Двойственный характер труда, воплощенного в товаре. Величина стоимости товара. Закон стоимости и его функции.

    шпаргалка , добавлен 22.10.2009

    Проблемы издержек производства как предмет исследования ученых-экономистов. Сущность издержек производства и их виды. Роль прибыли в условиях развития предпринимательства. Сущность и функции прибыли, ее виды. Рентабельность предприятия и ее показатели.

    курсовая работа , добавлен 28.11.2012

    Сущность и значение экономического роста. Типы и способы измерения экономического роста. Основные свойства функции Кобба-Дугласа. Показатели и модели экономического роста. Факторы, сдерживающие экономический рост. Производная функция и ее свойства.

    курсовая работа , добавлен 26.06.2012

    Сущность и основные функции прибыли. Экономическая эффективность модернизации технологического оборудования и использование инновационных технологий при ремонте дорожного покрытия автомобильных дорог. Резервы повышения прибыли в строительной организации.

    дипломная работа , добавлен 04.07.2013

    Сущность прибыли в экономической науке: понятие, виды, формы, методы планирования. Сущность метода прямого счета, совмещенного расчета. Основные пути увеличения прибыли на предприятиях России в современных условиях. Связь между оплатой труда и прибылью.

    курсовая работа , добавлен 18.12.2017

Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!